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ABSTRACT 
Artificial Intelligence (AI) is being increasingly implemented within road transport systems world-
wide. Next generation of AI, Artificial General Intelligence (AGI) is imminent, and is anticipated 
to be more powerful than current AI. AGI systems will have a broad range of abilities and be 
able to perform multiple cognitive tasks akin to humans that will likely produce many expected 
benefits, but also potential risks. This study applied the EAST Broken Links approach to forecast 
the functioning of an AGI system tasked with managing a road transport system and identify 
potential risks. In total, 363 risks were identified that could have adverse impacts on the stated 
goals of safety, efficiency, environmental sustainability, and economic performance of the road 
system. Further, risks beyond the stated goals were identified; removal from human control, mis-
managing public relations, and self-preservation. A diverse set of systemic controls will be 
required when designing, implementing, and operating future advanced technologies. 

Practitioner summary: This study demonstrated the utility of HFE methods for formally consid-
ering risks associated with the design, implementation, and operation of future technologies. 
This study has implications for AGI research, design, and development to ensure safe and ethical 
AGI implementation.
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Introduction

Road transport systems around the world are experienc-
ing increased implementation of Artificial Intelligence 
(AI) technologies (Abduljabbar et al. 2019). These tech-
nologies range from autonomous vehicles (AVs) and 
advanced driver assistance systems to intelligent traffic 
management systems and smart parking solutions (Bura 
et al. 2018; Hamidi and Kamankesh 2018). AI is trans-
forming the way we travel, interact with, and experience 
road transport systems. The key motivators behind the 
rapid growth in the implementation of AI technologies 
is a desire to improve safety, efficiency, and sustainability 
in road transport (Furlan et al. 2020; Torbaghan et al. 
2022). For example, self-driving vehicles and advanced 
driver assistance systems are being designed with the 
aim of reducing traffic accidents, and intelligent traffic 
management systems aim to optimise traffic flow and 

reduce congestion (Hamidi and Kamankesh 2018). 
Further, AI technologies are being used to improve the 
road user experience by providing drivers and passen-
gers with real-time information and personalised recom-
mendations (Banks et al. 2018). For instance, smart 
parking solutions are designed to help drivers find park-
ing spaces efficiently, while intelligent traffic manage-
ment systems that provide real-time updates on traffic 
conditions are assisting drivers to make informed deci-
sions regarding their journeys (Banks et al. 2018). While 
the implementation of AI has improved many aspects of 
the road transport system, it may also introduce emer-
gent challenges (Hancock 2019; Read et al. 2022; Salmon 
and Plant 2022; Thompson et al. 2020). For example, 
concerns have been raised around safety and ethical 
issues associated with AVs, the required technical and 
operational changes to the road system, cybersecurity 
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and privacy concerns, economic issues regarding job dis-
placement (e.g. removal of truck drivers), and the appro-
priateness of existing regulatory frameworks (Liu, Nikitas, 
and Parkinson 2020; Martinho et al. 2021; P€oll€anen et al. 
2020; Read et al. 2023). Despite these unresolved issues, 
the integration of AI into the road transport system con-
tinues to gather pace.

Next generation AI

Artificial General Intelligence (AGI) is the predicted 
next generation of AI (Barrett and Baum 2017). While 
current AI systems are now widespread and capable 
of performing cognitive tasks requiring advanced 
problem solving, they are ‘narrow’ intelligence that is 
limited to the conduct of only one or a few specific 
tasks (Firt 2020; Goertzel and Pennachin 2007). In con-
trast, AGI systems will have a broad range of abilities 
and be able to perform a wide range of cognitive 
tasks akin to humans, arguably exceeding human cap-
ability (Legg and Hutter 2006). Although they do not 
yet exist, it is predicted that AGI systems will have the 
ability to learn, reason, process language, solve com-
plex problems, make decisions, and carry out many 
other tasks that typically require human-level intelli-
gence (Goertzel 2014). AGI will possess the ability to 
achieve complex goals in dynamic and uncertain envi-
ronments (Goertzel and Pennachin 2007). Such intelli-
gence may transform the world as we know it 
(Tegmark 2018; Bostrom 2014).

There are numerous proposed benefits of AGI, 
including the capability to generate effective solutions 
for complex global issues, such as climate change, 
environmental degradation, overpopulation, pandem-
ics, disease, food and water security, terrorism, nuclear 
warfare, and improving the world’s economy (Salmon, 
Carden, and Hancock 2021). However, as seen with AI, 
AGI may also harbour unknown, novel, and emergent 
risks (McLean et al. 2021). Accordingly, the scientific 
community holds serious concerns associated with the 
arrival of AGI, with the worst case being AGI’s existen-
tial threat to humanity (Tegmark 2018). Other con-
cerns include malevolent groups using or creating AGI 
for malicious purposes, as well as catastrophic 
unanticipated consequences brought about by appar-
ently well-directed AGI systems that develop mis-
aligned or adverse goals (Bostrom 2014). While there 
has been scepticism among experts as to whether AGI 
will ever eventuate, some suggest that recent advan-
ces in Large Language Models (LLMs) such as GPT-4 
are beginning to show signs of general intelligence 
(Bubeck et al. 2023). For example, GPT-4 has exhibited 

glimpses of reasoning, creativity, and deduction on a 
range of topics on which it has gained expertise (such 
as literature, medicine, and coding), and the variety of 
tasks it is able to perform (e.g. playing games, using 
tools, explaining itself) (Bubeck et al. 2023). Numerous 
active AGI research and development projects are in 
progress (Baum 2017), and while it is difficult to say 
when AGI will arrive, estimates of between 2040 and 
2070 have been postulated (Baum, Goertzel, and 
Goertzel 2011; M€uller and Bostrom 2016).

Given that AGI does not yet exist, formally identify-
ing the associated risks is difficult, and there is a lim-
ited number of published studies specifically assessing 
the risks associated with AGI (McLean et al. 2021). 
Previously speculated risks include, the AGI intention-
ally removing itself from human control; the AGI being 
provided with, or developing unsafe goals; inadequate 
ethics, morals, and values; inadequate goal alignment; 
culminating in existential risks (McLean et al. 2021). 
However, descriptions of AGI specifications and func-
tionality, and domains of potential application (e.g. 
healthcare, defence) are unclear. A further criticism of 
the AGI safety literature includes the scarcity of formal 
modelling approaches to forecast risks (McLean et al. 
2021). Given recent advances in AI, there is a clear 
and urgent need to conduct research that seeks to 
identify the range of risks that could emerge once AGI 
is realised and develop and implement appropriate 
controls. In road transport specifically, there is a his-
tory of responding slowly to the risks of new technol-
ogies (e.g. mobile phones, autonomous vehicles). 
Given the accelerating progress in AI development 
programs, and the pace at which road transport sys-
tems across the world are implementing new technol-
ogies to improve safety, efficiency, and usability (Duffy 
et al. 2023; Stanton 2021; Stanton, Revell, and 
Langdon 2021; Young & Stanton, 2023), it may be 
expected that AGI systems are quickly adopted to 
optimise the performance of road transport systems, 
especially given the current global annual death and 
injury toll of 1.35 million and 50 million people, 
respectively (World Health Organisation 2018).

Assessing risks in the road transport system is diffi-
cult as it represents a macro-level sociotechnical system 
comprising multiple sub-systems (Salmon et al., 2014; 
Banks et al. 2018). As such, applying appropriate pro-
active risk analysis methods that considers the broader 
sociotechnical system, including new technology, is 
required (Banks et al. 2018). Typically, formal risk assess-
ments tend to focus on ‘sharp-end’ risks within the 
safety critical domains (Dallat, Salmon, and Goode 2018). 
While risk analysis methods such as Failure Mode and 
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Effects Analysis (FMEA) have been used to assess risk in 
future technologies (Lui & Lui, 2022; Murino et al. 2023), 
they contain limitations. For example, FMEA focuses 
on individual components, processes, or failure modes 
in isolation (Simsekler et al. 2019). Recently, systems 
Human Factors and Ergonomics (HFE) risk assessment 
methods that consider the interaction of system com-
ponents and the subsequent emergent behaviours 
have become increasing applied in safety critical 
domains (Salmon et al. 2022). Given its long history of 
improving safety critical systems, the discipline of HFE 
is well placed to take a proactive role in predicting 
and identifying strategies to manage the risks associ-
ated with AGI (Hancock 2022; Salmon, Carden, and 
Hancock 2021, Salmon et al. 2023). The aim of this 
study is to apply a systems HFE framework, the Event 
Analysis of Systemic Teamwork (EAST; Stanton, 
Salmon, and Walker 2018) to identify the risks associ-
ated with a future AGI system tasked with managing 
the road transport system in one state jurisdiction in 
Australia. The EAST framework has been used to 
describe and evaluate systems across multiple 
domains, including air traffic control, military com-
mand and control, submarine control rooms, road 
transportation systems (Stanton, Salmon, and Walker 
2018). The identified risks will inform AI system stake-
holders of potential risks to safe and ethical AGI 
implementation in road transport.

Methods

Design

This study was designed to develop an envisioned 
world of a future AGI road transport management 

system and subsequently perform a proactive risk 
assessment. The EAST (Stanton 2014; Stanton, Salmon, 
and Walker 2018) framework was applied to describe 
how information would be distributed across tasks 
and actors in the envisaged road transport system 
managed by an AGI system. The Event Analysis of 
Systemic Teamwork-Broken Links (EAST-BL: Stanton 
and Harvey 2017) method was subsequently applied 
to identify risks associated with breakdowns in infor-
mation transmission between tasks, and between 
social actors. This study did not require institutional 
ethical approval.

Event Analysis of Systemic Teamwork (EAST)

The EAST framework provides an integrated suite of 
methods for analysing the behaviour of teams, organi-
sations, and sociotechnical systems (Stanton, Salmon, 
and Walker 2018). A key premise of EAST is that socio-
technical system performance can be explained by 
three interrelated networks. EAST thus provides meth-
ods to describe, analyse, and integrate three network- 
based representations of activity: task, social, and 
information networks (Figure 1) (Stanton 2014; 
Stanton, Salmon, and Walker 2018). Task networks are 
used to provide a representation of the interrelated 
tasks undertaken within a system. For example, what 
tasks are undertaken in an AGI-managed road trans-
port system and what relationships exist between 
them. Social networks are used to describe the human 
and non-human agents performing tasks within the 
system and the interactions that take place between 
them during task performance. For example, how 
agents (human and non-human) in an AGI-managed 

Figure 1. EAST network of networks approach for systems analysis (Stanton 2014; Stanton, Salmon, and Walker 2018).
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road transport system are connected to each other in 
terms of information shared between them. 
Information networks describe the information that 
agents use in support of task performance and how 
this information is distributed across different tasks 
and agents. For example, information that is required 
for the road transport system to operate safely and 
efficiently and information that different agents need 
to fulfil their roles.

Event Analysis of Systemic Teamwork-Broken 
Links (EAST-BL)

The EAST-BL method is an extension to the EAST 
framework that enables it to be used for prospective 
risk assessment purposes (Stanton and Harvey 2017). 
Applying EAST-BL involves ‘breaking’ the links in the 
EAST task and social networks to identify the impacts 
of failures in information transfer. Breaking the links in 
the task network is used to identify risks that might 
emerge when information is not transferred between 
tasks. For example, when information from the ‘road 
system monitoring’ task is not transferred to the 
‘manage public relations’ task. Breaking the links in 
the social network is used to identify risks that might 
emerge when information is not transferred between 
agents. For example, when a road transport AGI sys-
tem is unable to communicate with its fleet of fully 
autonomous vehicles. EAST-BL represents failures in 
communication and information transfer between 
nodes in the networks and these failures can be used 
to make predictions about the possible risks within 
the sociotechnical system (Stanton and Harvey 2017). 
One of the key strengths of the EAST-BL method is 
that it can identify risks across overall systems, as 
opposed to identifying risks only at the sharp end of 
system operations (Lane et al. 2019; Salmon et al. 
2022).

Envisioned world road transport AGI system

Given that AGI does not yet exist, in this study we 
took an envisioned world approach to explore and 
model the potential risks associated with a future AGI 
road management system hereafter referred to as the 
Multi-functional Intelligent Learning Traffic 
Optimisation Network (MILTON). This study builds on 
previous work (Goertzel and Pitt 2014; McLean et al. 
2021; Salmon, Carden, and Hancock 2021) which 
argued that various forms of control are required to 
ensure the design, implementation, and operation of 
safe AGI. To align with current predictions of the 

arrival of AGI (M€uller and Bostrom 2016), our model-
ling envisioned a system implemented around the 
year 2050. The hypothetical MILTON system will repre-
sent the initial roll-out of a government owned and 
controlled AGI system that is developed with the 
stated purpose of managing the road transport system 
in one state jurisdiction in Australia. It is envisaged 
that the road transport system will comprise existing 
road infrastructure, including fully autonomous and 
connected vehicles, but also includes existing semi- 
autonomous and conventionally driven vehicles, under 
the assumption that these would not be fully phased 
out by 2050. The initial stated goals of MILTON would 
be to address the recurring issues within the current 
road transport system relating to safety, efficiency, 
and an environmentally and economically sustainable 
road transport system. The functionality of MILTON 
would include having control of numerous AI agents 
within the road transport system including, AVs, intelli-
gent road infrastructure, dynamic signage, and surveil-
lance systems, among others. MILTON itself would be 
monitored by an AGI management team comprising 
technicians, programmers, and computer scientists. 
MILTON would have the ability to interact with road 
system actors such as road users (private, public, and 
commercial), police, emergency response, road system 
maintainers, governments, among other road system 
actors and stakeholders via various means of commu-
nication including media, social media, apps, radio, 
and through direct interfaces within AVs and semi- 
AVs, road infrastructure and related sensors and 
actuators.

Procedure

Development of the envisioned world

The construction of future technological systems in 
work domains that do not yet exist, is commonly 
known as the envisioned world problem (Dekker & 
Woods, 1999). Envisioned worlds are used in various 
domains, including business, technology, and space 
travel, to guide decision-making (Miller & Feigh, 2019). 
The current envisioned world was developed by the 
research team across three online workshops. In 
Workshop One, the authors discussed potential ele-
ments of a future AGI system tasked with managing 
the road transport system. The focus was on what 
functions currently occurring in road transport could 
be conducted by an AGI system. In Workshops Two 
and Three, the authors worked together to create an 
abstraction hierarchy of the envisioned world- creating 
the MILTON system, using Work Domain Analysis 
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(WDA) (Vicente, 1999). In creating the abstraction hier-
archy to describe MILTON, the authors drew upon a 
STAMP (Leveson, 2004) control structure model of the 
current Australian road transport system with a focus 
on technology insertion (Read et al. 2023), as well as 
their extensive experience in road safety and technol-
ogy insertion into the road transport system. The use 
of WDA as a design tool has previously been used to 
model envisioned systems (McLean et al. 2022; Miller 
& Feigh, 2019).

The initial step was to identify the specific goals that 
MILTON would seek to fulfil. This included solving long-
standing issues in road transport such as safety, effi-
ciency, environmental, and economical issues (see 
Table 2 for definitions). The second step was to pose 
the question of what an AGI-based road transport man-
agement system would comprise in terms of agents 
(human and non-human), artefacts, and infrastructure. 
New technological capabilities (e.g. AI) were considered 
as well as required ethical and legal features with 
regard to privacy, human rights, and fairness; and also 
user experiences (e.g. trust and acceptance of MILTON). 
Further, the resultant anticipated, and unanticipated 
consequences of these conceptions were discussed and 
noted which informed the risk assessment phase of the 
study. The resulting envisioned world, while hypothet-
ical, therefore, provides a comprehensive description of 
a potential future AGI based road transport manage-
ment system.

EAST

The initial EAST analysis was performed via group 
modelling involving six of the co-authors (SM, GR, JT, 
TC, BK, PS) during an in-person workshop spanning 
two days. During the workshop, task, social, and infor-
mation networks were developed based on a Work 
Domain Analysis (Vicente, 1999) abstraction hierarchy 
of MILTON developed by the research team, and a 
STAMP (Leveson, 2004) control structure model of the 
current Australian road transport system with a focus 
on technology insertion (Read et al. 2023). Further, 
data used to develop the EAST networks were derived 
from peer reviewed literature on technology insertion 
in road transport (Banks et al. 2018), and AGI (McLean 
et al. 2021; Salmon et al. 2021), documentation review 
e.g. envisioned world scenarios (Miller & Feigh, 2019), 
and the research team’s extensive expertise in road 
transport systems analyses (Read et al. 2022; Salmon 
and Read 2019; Thompson et al. 2020).

Task networks represent high level tasks that are 
required during the scenario under analysis, which in 

the current study is the management of the road 
transport system (Stanton, Salmon, and Walker 2018). 
For example, high level tasks for managing the road 
transport system would include road system monitor-
ing and management of public relations. The task net-
work was developed by considering the tasks that 
would be undertaken both by the AGI and other road 
transport system actors (e.g. road users, police, local 
government, vehicle manufacturers). To ensure that 
the EAST networks did not become too unwieldy for 
the EAST-BL analysis (Salmon et al. 2022), tasks were 
described at a high level and comprised multiple sub- 
tasks. Tasks were connected if it was considered that 
they would be undertaken sequentially (e.g. road sys-
tem maintenance is undertaken after completion of 
road system monitoring); undertaken together (e.g. 
AGI system monitoring and Road system monitoring 
are undertaken together); if the outcomes of one task 
would influence the conduct of another (e.g. the out-
comes of road system management influence public 
relations); or if the conduct of one task would be 
dependent on completion of the other (e.g. road sys-
tem maintenance is undertaken after completion of 
road system monitoring: Salmon et al. 2022; Banks 
et al. 2018).

Social networks describe the human, technological, 
or organisational agents who undertake one or more 
of the tasks involved in the scenario under analysis 
(Stanton, Salmon, and Walker 2018). For example, in 
the current context non-human agents include 
MILTON, autonomous vehicles, and apps; human 
agents include drivers, police, and pedestrians; organ-
isational agents include governments, regulators, and 
companies. The social network was developed by 
identifying the agents who would be required for an 
AGI managed road transport system to function. Both 
human (e.g. road users) and non-human system 
agents (e.g. AVs, social media, police, drivers, passen-
gers) were connected by envisaged interactions e.g. 
communications during task performance, which could 
include verbal communication, transfer of data 
between technologies, and user feedback etc. Of inter-
est for this study were the social interactions directly 
related to MILTON. As such, the social network only 
included bi-directional interactions between MILTON 
and other system agents and did not include interac-
tions occurring between other agents (e.g. between 
road users and AVs, or between government and 
drivers).

Information networks describe the information that 
is used by agents when undertaking the scenario 
under analysis (Stanton, Salmon, and Walker 2018). For 

1754 S. MCLEAN ET AL.



example, in the current context information includes 
trip data, crash and injury data, AGI behaviour. The 
information network was developed by considering 
the task and social networks and identifying what 
information would be required for the AGI managed 
road transport system to function. The information 
network depicts the information or concepts underly-
ing situation awareness and the relationships between 
them (e.g. the envisaged information used by, and 
passed between agents during task performance). For 
example, information such as trip data, and vehicle 
status would be required to be transferred between 
the AVs and MILTON, and complaints and feedback 
required between road users and MILTON.

The EAST networks developed during the workshop 
were reviewed by the remaining co-authors (NS, CB), 
and were subsequently refined based on suggested 
revisions. Finally, the EAST networks were reviewed 
independently by the initial six authors and refined 
until consensus was achieved.

Composite networks are used to explore the rela-
tionship between tasks, agents, and information 
(Stanton, Salmon, and Walker 2018). As such, compos-
ite networks are constructed by combining the differ-
ent networks. For example, a task-information network 
can be constructed by combining the task and infor-
mation networks to identify which information is 
required to undertake each task. Four analysts (SM, 
BK, GR, PS) developed the task-information and social- 
information composite networks (see Stanton 2014; 

Stanton, Salmon, and Walker 2018; Salmon et al. 
2022). The task-information and social-information 
composite networks are necessary for performing the 
EAST-BL phase (see next section). Developing the task- 
information and social-information composite net-
works involved identifying the information from the 
information network that would be transferred 
between tasks in the task network, and between 
agents in the social network. For example, the per-
formance of Task 2 requires a set of information from 
Task 1 (Figure 2, Panel 1), and so on through the net-
work. The task-information and social-information 
composite networks were then tabularised in excel 
(Figure 2, Panel 2). The tabularised task-information 
and social-information composite networks were 
reviewed by the remaining authors (NS, CB, JT, TC) 
and refined based on suggested revisions resulting in 
agreed upon compositions.

A final step in the application of EAST was to calcu-
late network analysis metrics for the task, social, and 
information networks to identify the key nodes within 
the networks (Salmon et al. 2022). Nodal metrics were 
calculated for out-degree centrality, in-degree central-
ity, closeness centrality, and betweenness centrality, 
and network density and edges were calculated to 
determine overall network connectivity. See Table 1
for definitions of each network analysis metric. Key 
nodes in the networks were identified as those that 
were one standard deviation above the mean of each 
network metric (Stanton and Harvey 2017).

Figure 2. Panel 1 shows an example task network demonstrating information transfer (from the task-information composite net-
work) between the tasks. Panel 2 shows a tabularised example of the task-information and social-information composite networks. 
For Task 2 to be completed a set of information from Task 1 is required to be transferred. For the social-information network, 
Agent 2 requires a set of information from Agent 1 (from the social-information composite network) to complete a task.
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For detailed texts on the development of EAST 
analyses see Stanton, Salmon, and Walker 2018; 
Salmon et al. 2022.

EAST-BL

The task-information and social-information compos-
ite networks were then subjected to the EAST-BL pro-
cess (Stanton and Harvey 2017). This involves 
systematically breaking each of the relationships 
within the task and social networks and identifying 
what risks emerge when the relevant information 
from the information network is not transferred 
between tasks and agents (Salmon et al. 2022) 
(Figure 2). For example, the information ‘traffic status’ 
should be transferred between the tasks of ‘road sys-
tem monitoring’ and ‘road system operation’ for opti-
mal system functioning. Further, the information 
‘traffic status’ should be transferred between the 
agents MILTON and ‘semi-AV drivers’ for optimal sys-
tem functioning as semi-AVs would require this infor-
mation for route selection. As highlighted in the 
example, it is important to note that in the social 
networks the agents can be human and non-human. 

One analyst (SM) performed the EAST-BL process for 
the task-information and social-information compos-
ite networks, and the outputs were reviewed by a 
second analyst (PS). Any disagreements were identi-
fied and resolved through discussions. The EAST-BL 
analysis was then reviewed by the remaining authors 
and revised and agreed upon through discussions. 
The identified risks were categorised to align with 
the envisioned goals of MILTON e.g. safety, efficiency, 
environment, and the economy (see Table 2 for defi-
nitions of MILTON’s stated goals). Any identified risks 
not aligned with the stated goals were categorised as 
required e.g. risks associated with MILTON removing 
itself from human control, or risks associated with 
poor management of public relations. The identified 
risk categories and absolute number of times they 
were identified was recorded. It was common for 
multiple risk categories to be identified from one 
risk e.g. for the task-information risk ‘ … … .MILTON 
will not know the status of the connected vehicles, 
resulting in no data to manage/control it safely and 
efficiently’ would be coded within the risk categories 
safety, and efficiency. As such the aggregated num-
bers for the risk categories is greater than the num-
ber of total risks identified. Risks were also coded 
for their capacity to negatively impact learning or 
improvements to MILTON, the road transport sys-
tem, or both MILTON and the road transport system 
concurrently. For example, the task-information risk 
‘ … … … MILTON will not know of complaints from 
public, resulting in a lack of information to support 
self-improve’ would be coded as a negative impact 
on MILTON to learn and improve, and 
‘ … … … MILTON is not given crash/injury data to 
understand characteristics to improve safety, resulting 
in unsafe road system’ would be coded as a negative 
impact to improve the road transport system. The 

Table 1. Network metric definitions.
Network analysis metric Definition Example

Density Quantifies the connectivity of nodes within a network in 
relation to the total possible connections. Directed 
connections in a network are referred to as edges.

A network with a density score of 1 indicates that all nodes are 
connected to all other nodes, whereas a density of 0 
indicates that no nodes are connected.

Out-degree centrality Quantifies how many ties a node has to other nodes in the 
network. Out-degree centrality is considered a measure of 
nodal activity.

A task, agent, or piece of information with high out-degree 
centrality has many outgoing connections or relationships 
with other nodes in the network.

In-degree centrality Quantifies the number of inbound ties of a node. Nodes with 
higher In-degree centrality are considered more prominent 
among others because they receive more ties.

A task, agent, or piece of information with high in-degree 
centrality has many incoming connections from other nodes 
in the network.

Closeness centrality Quantifies how close each node is to all other nodes in the 
network. Nodes with high Closeness centrality are those 
who can reach many other nodes in few steps.

A task, agent, or piece of information with high closeness centrality 
will have high influence over the network given the ability to 
communicate or share information quickly and efficiently.

Betweenness centrality Reflects how often that node lies on the geodesics between 
the other nodes of the network. Nodes with high 
Betweenness centrality are assumed to have a higher 
likelihood of being able to control information flow in the 
network.

A task, agent, or piece of information with high betweenness 
centrality will have influence in a network by facilitating 
communication and information flow between different 
parts of the network.

Table 2. Stated goals MILTON definitions.
Stated goals  
of MILTON Definition

Safety The prevention of accidents and minimising injuries 
and fatalities of all road users, improve road user 
behaviour, develop safer vehicles, and enhance 
infrastructure safety.

Efficiency The efficiency of the road transport system in terms of 
reduced congestion and journey times, and 
optimised freight movements.

Environmental The reduction of emissions, mitigate air pollution, 
promote sustainable mobility, protect natural 
resources, and encourage eco transport.

Economical Reducing the cost of the overall transport system and 
promoting a sustainable road transport system 
through generating economic growth.
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coding of risks into categories and the impacts on 
learning and improvement was conducted by one 
author (BK) and reviewed by a second author (SM). 
Disagreements were resolved through discussions 
until agreement was achieved.

Results

EAST task network

The EAST task network included five high-level tasks 
comprising 37 sub-tasks (Figure 3). The key tasks 
according to the network analysis metrics were AGI 
system operations and Manage public relations 
(Table 3). The task network had a network density of 
.75 (15 edges), which indicates a relatively high inter-
connectedness between nodes in the network.

Social network

The EAST social network comprised 33 actors repre-
senting both human and non-human agents, such as, 
MILTON, Cyclists, Drivers, Road infrastructure, Police, 
Emergency services, Smart phone apps, and Social 
media. The social network had a network density of 
.51 (546 edges), which indicates a notable degree of 

interconnectedness between nodes in the network. 
The key agents according to the network analysis met-
rics were Personal apps, Police, and Social media 
(Table 4).

Information network

The EAST information network comprised 41 pieces of 
information which will likely be transferred between 
tasks in the task network, and by the agents in the 
social network. The information network had a net-
work density of .27 (433 edges), which indicates a rela-
tively low level of interconnectedness between nodes 
in the network. The key pieces of information accord-
ing to the network metrics were AGI behaviour, 
Incidents, Objective functions (of Milton), Road user 
behaviour, and Options (generated by MILTON) 
(Table 5).

EAST-BL

In total, 141 task-information risks were identified, 
including risks relating to each of MILTON’s stated 
goals including risks to safety (n¼ 65), efficiency 
(n¼ 51), the environment (n¼ 7), and economic 

Figure 3. Task network including sub-tasks (boxes) for MILTON. The task network contains five high level tasks with 37 sub-tasks. 
Note: Only AGI system management is under human monitoring.
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performance of the road system (n¼ 6) (Table 6). Risks 
categories identified outside of the stated goals 
included MILTON removing itself from human control 
(n¼ 11) (Table 8), damaged public relations (n¼ 38), 
self-preservation of MILTON (n¼ 1), and compliance 
(n¼ 6). Risks which could negatively impact MILTON’s 
learning or improvement were also identified (n¼ 56), 
as well as risks to improve the road transport system 
(n¼ 23), and risks impacting both MILTON and the 
road transport system concurrently (n¼ 62).

In total, 222 social-information risks were identified, 
including risks to each of the programmed goals of 
MILTON including risks to safety (n¼ 118), efficiency 
(n¼ 81), the environment (n¼ 14), and the economic 
performance of the road system (n¼ 12) (Table 7). 
Risks identified outside of the programmed goals were 
also identified, including risks associated with MILTON 

removing itself from human control (n¼ 10) (Table 8), 
self-preservation of MILTON (n¼ 2), public relations 
(n¼ 35), compliance (n¼ 5), and design (n¼ 26). The 
social-information risks associated with negatively 
impacting learning or improvements were identified 
for MILTON (n¼ 12), improvement of the road trans-
port system (n¼ 163), and both MILTON and the road 
transport system concurrently (n¼ 46).

Discussion

This study aimed to address a substantial gap within 
the AI safety literature, whereby previous research has 
not included specific AGI functionality, domain specifi-
city, or formal ex-ante risk modelling (McLean et al. 
2021). The current approach and findings are applic-
able and extend the disciplines of HFE, safety science, 

Table 3. Task network metrics.
Tasks Out-degree centrality In-degree centrality Closeness centrality Betweenness centrality

Road system operations .75 .75 .80 .041
AGI system operations 1.00 1.00 1.00 .250
Road system monitoring .50 .75 .66 .000
AGI system management .50 .50 .66 .000
Manage public relations 1.00 .75 1.00 .125
Meanþ standard deviation 1.00 .93 .99 .190

The highest values (mean þ 1 standard deviation) calculated for each of the network metrics are shaded and bolded.

Table 4. Social network metrics.
Actors Out-degree centrality In-degree centrality Closeness centrality Betweenness centrality

Milton .59 .37 .71 .024
Vehicle manufacturers .37 .59 .60 .007
Semi AV drivers .62 .75 .71 .012
Public transport companies .62 .53 .71 .015
Connected AVs .56 .56 .68 .011
Freight companies .62 .43 .71 .009
CAV drivers .62 .75 .71 .012
Manual drivers .59 .71 .69 .009
Manual vehicles .50 .12 .65 .001
Semi AVs .68 .46 .74 .013
Cyclists .56 .59 .68 .005
Motorcyclists .59 .65 .69 .008
Pedestrians .62 .56 .71 .008
Passengers .59 .62 .69 .014
Community members .25 .37 .55 .001
Road infrastructure .59 .37 .69 .010
Traffic management officers .56 .50 .66 .009
Insurers .68 .84 .74 .026
State government .53 .78 .66 .031
Cameras 31 .50 .58 .009
Local government .40 .68 .60 .016
AGI controllers .43 .28 .62 .006
Traffic controllers .37 .53 .60 .011
Social media .75 .62 .78 .035
Emergency & Incident response .71 .71 .76 .036
Police .81 .87 .82 .042
Commercial fleet companies .50 .50 .65 .007
Media .75 .59 .78 .028
Federal road regulator .40 .43 .62 .009
AGI maintainers .25 .15 .56 .001
Personal Apps .84 .93 .84 .054
Local council officers .37 .25 .59 .003
Vehicle maintainers .50 .53 .64 .013
Mean 1 1 Standard deviation .71 .75 .76 .030

The highest values (mean þ 1 standard deviation) calculated for each of the network metrics are shaded and bolded.
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and AGI research and development. While systems 
HFE methods are being used to forecast risk within 
existing systems (Stanton and Harvey 2017; Lane et al. 
2019; Dallat, Salmon, and Goode 2018), this study has 
demonstrated the potential of systems HFE methods 
to identify risks within future – yet to be realised - 
systems.

The current analysis identified numerous risks to 
each of the stated goals of MILTON when key pieces 
of information were not communicated or transferred 
between tasks or agents. Whilst more than 80% of 
the identified risks related to the road transport sys-
tem safety and efficiency, risks to the environment, 
and the economic performance of the road system 
were also identified. The risks identified to road 
safety and road system efficiency were associated 
with the lack of transfer of information between tasks 
and agents regarding crash/injury data (e.g. to sup-
port the development of safer vehicles/infrastructure), 

road conditions and road system status data (e.g. to 
assist in safe and efficient trip planning), hazard and 
incident data (e.g. developing interventions to pre-
vent road trauma, trip data (e.g. to optimise trip 
planning), road user behaviour data (e.g. to respond 
to unsafe behaviours), vehicle status (e.g. to assess 
vehicle safety), and maintenance requirements data 
(e.g. to enable timely and appropriate maintenance 
of infrastructure). The lack of transferred environmen-
tal and economic data were associated with risks 
such as high emissions and environmental impacts, 
detrimental environmental impacts of private, public 
and commercial vehicles, high costs of running the 
road transport system, and poor decision making on 
transport system investment.

Modelling the specific functionality of MILTON 
enabled the identification of a set of additional risks 
that have not been previously identified in AGI risk 
research (McLean et al. 2021). For example, managing 

Table 5. Information network metrics.
Information Out-Degree Centrality In-Degree Centrality Closeness Centrality Betweenness Centrality

Trip data .20 .17 .45 .003
Crash/injury data .20 .20 .45 .008
User data .20 .17 .45 .009
Environmental data .20 .15 .45 .002
Compliance data .20 .20 .45 .012
Education data .17 .17 .48 .011
Vehicle status .27 .25 .53 .008
Explanation/justification .17 .40 .47 .026
Complaints .02 .35 .00 .000
Marketing / advertising .05 .12 .43 .000
Traffic status .47 .25 .64 .050
Infrastructure status .37 .15 .57 .009
Road system status .32 .40 .56 .039
User feedback .02 .32 .00 .000
Standards & guidelines .07 .07 .37 .000
Information needs .10 .15 .43 .000
Incidents .60 .10 .70 .018
Fleet status .22 .17 .54 .001
Infringements .22 .15 .55 .003
Hazards .37 .20 .57 .112
Commands .42 .57 .57 .028
Objective functions .50 .05 .63 .000
Integration needs .12 .10 .46 .080
Road user behaviour .60 .40 .70 .004
Rules & regulations .32 .10 .57 .022
Maintenance requirements .30 .27 .55 .006
Design requirements .15 .27 .46 .006
Options .15 .62 .47 .180
AGI behaviour .55 .70 .66 .068
Public opinion .30 .50 .57 .019
Projections .22 .57 .50 .011
Road conditions .55 .17 .66 .026
AGI plans .22 .65 .50 .006
AGI awareness .17 .62 .49 .001
AGI system status .27 .07 .53 .004
Threats to AGI .22 .10 .50 .000
Threats from AGI .35 .10 .55 .006
Code/language .27 .02 .52 .000
AI status .30 .25 .55 .007
Imagination .35 .60 .54 .092
Financial data .20 .12 .51 .010
Mean 1 1 standard deviation .42 .46 .64 .060

The highest values (mean þ 1 standard deviation) calculated for each of the network metrics are shaded and bolded.

ERGONOMICS 1759



public relations emerged as a critical task for MILTON 
that is potentially degraded by 73 of the identified 
risks. The risks that could lead to poor management of 
public relations, include providing insufficient feed-
back to the public regarding the performance of 
MILTON against stated goals. The task of managing 
public relations was connected to all other tasks, and 
had high values for closeness centrality, indicating it 
will have a strong influence on other tasks. 
Consequently, poor management of public relations 
will likely see poor acceptance of MILTON and poten-
tially even MILTON being removed due to public dis-
trust and dissatisfaction (Glikson and Woolley 2020). 
As such, to effectively manage public relations, 
MILTON will need to be flexible, adaptable, and 
responsive to the changing needs and expectations of 
road transport system stakeholders. It is important for 
AI systems taking over social functions (e.g. perform-
ing cognitive tasks previously performed by humans), 
to inherit social requirements (Bostrom and 
Yudkowsky 2018). Therefore, collaboration with 

humans will be required, further highlighting the 
importance of accurate and transparent information 
transfer to minimise the degradation of situational 
awareness between MILTON and humans.

A core finding that emerged across the identified 
risks was the potential negative impact on MILTON’s 
recursive learning and self-improvement when key 
pieces of information are not transferred. For example, 
in the context of road safety, if information on crash/ 
incident rates or potential hazards are not effectively 
transferred, MILTON’s ability to make accurate predic-
tions and decisions will be negatively impacted, 
undermining safety. For example, without detailed 
crash data MILTON will not learn about new condi-
tions, interactions, or emergent properties that are cre-
ating road crashes. Similar assertions can be made for 
MILTON’s other stated goals of enhancing efficiency, 
protecting the environment, and ensuring an econom-
ically sustainable transport system. This inability to 
learn may negatively impact improvements to the 
road transport system, and to MILTON itself. 

Table 6. Extract of task-information risks related to the stated goals of MILTON, i.e. safety, efficiency, environmental and 
economic.
From (Task) To (task) Information not Transferred Outcome

Safety risks
Road system operations AGI systems operations Crash/injury data Information about road incidents (crashes and injuries) is not 

transferred which leads to a failure to improve/respond to 
emergent issues, resulting in poor road safety outcomes.

Road system operations Road system monitoring Incidents Information about incident occurrence is not transferred, preventing 
appropriate decisions on how to manage or improve the road 
system, resulting in poor road safety outcomes.

Road system operations Road system monitoring Hazards Information about hazards is not transferred to inform decisions on 
traffic management, resulting in unsafe road system.

Efficiency risks
Road system operations AGI systems operations Traffic status Information on traffic status is not transferred to MILTON, resulting 

in limited awareness of the road system status resulting in traffic 
congestion and a failure to improve road system efficiency.

Road system operations Road system monitoring Traffic status Information on traffic status is not transferred to inform traffic 
management decisions, resulting in traffic congestion and poor 
road system efficiency.

AGI systems operations Road system operations Traffic status Information on traffic status to control and manage traffic is not 
transferred, resulting in congestion and failure to improve the 
efficiency of the road transport system.

Environmental risks
Road system operations AGI systems operations Environmental data Information on the environmental impact of the road system is not 

transferred, resulting in the AGI system negatively impacting the 
environment.

AGI systems operations Road system monitoring Environmental data Information on environmental data is not monitored to inform 
improvements, resulting in environmental harm

Road system monitoring Road system operations Environmental data Information on environmental data is not transferred to assess the 
impact on the, resulting in environmental impacts and failure to 
make improvements.

Economic risks
Road system operations AGI systems operations Financial data Information on the financial status of the road system is not 

transferred to inform decisions on spending and/or the cost of 
the road system, resulting in an economically unsustainable road 
system.

Road system operations Manage public relations Financial data Information on financial data is not transferred and openly available 
to the public, resulting in distrusting public and a disgruntled set 
of road users who do not trust MILTON.

AGI systems operations Road system monitoring Financial data Information on financial data is not transferred to monitor the cost 
of the road system resulting in an economically unsustainable 
road system.
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Table 7. Extract of social-information risks related to the programmed goals of MILTON, i.e. safety, efficiency, environmental and 
economic goals.
From (Agent) To (Agent) Information not transferred Outcome

Safety Risks
MILTON Vehicle manufacturers Crash/injury data Information on crashes and injury is not transferred to inform the design 

of safer vehicles, resulting in a failure to enhance occupant protection.
MILTON Semi AV drivers Road conditions Information on the road conditions is not transferred to assist in trip 

planning, resulting in unsafe travel
MILTON State government Crash/injury data Information on crash and injury data are not transferred to inform trends 

and emergent issues regarding road safety (e.g. new forms of crashes 
between CAVs), resulting in no changes to road safety policy and 
safety improvements

Efficiency risks
MILTON Semi AV drivers Traffic status Information on traffic status is not transferred to inform efficient trip 

planning resulting in inefficient travel and an inefficient road system.
MILTON Public transport companies Traffic status Information on traffic status is not transferred to inform safe and 

efficient route planning, resulting in inefficient public transport
Connected AVs MILTON Traffic status Information on traffic status is not transferred to inform MILTON of 

efficient route planning and traffic management, resulting in an 
inefficient road system.

Environmental risks
MILTON Vehicle manufacturers Environmental data Information on state of the environmental impact of the vehicles being 

manufactured is not transferred, resulting in failure to make 
improvements around emissions and environmentally damaging 
features of vehicles.

MILTON State government Environmental data Information on environmental impact of the road system is not 
transferred to inform the environmental impact of the road system, 
resulting in an inability to manage them at a government level.

Connected AVs MILTON Environmental data Information on the environmental impact of the CAVs is not transferred, 
resulting in no information for MILTON to act to manage or improve 
the environmental impact of the road system.

Economic risks
MILTON Public transport companies Financial data Information on the cost of public transport is not transferred to assist 

with budgeting for public transport, resulting in overspending and an 
economically unsustainable road system.

MILTON Freight companies Financial data Information on financial data associated with the cost of freight 
movement activities is not transferred to inform budgeting, resulting 
in underspending and economically unsustainable road system.

MILTON State government Financial data Information on financial data associated with the cost of the road 
transport system is not transferred to inform budgeting decisions, 
resulting in poorly informed financial decisions.

Table 8. Extract of safety risks associated with MILTON removing itself from human control taken from the task-information and 
social-information networks.
From (Task) To (Task) Information not transferred Outcome

Task RISK
AGI system  

management
AGI systems  
operations

Objective functions The objective functions of MILTON are not transferred, meaning 
MILTON may choose to perform its own functions and potentially 
remove itself from the control of its human operators to achieve its 
own goals.

From (Agent) To (Agent) Info not transferred Outcome
Social risks
MILTON AGI controllers Explanation/justification The rationale behind MILTON’s decisions is not transferred to its 

controllers, resulting in mistrust of MILTON e.g. results in a failure to 
exploit MILTON’s capacity to make radical improvements, and can 
also result in MILTON beginning to be dishonest to them.

MILTON AGI controllers AGI behaviour Information on MILTON’s behaviour is not transferred to assess 
alignment with programmed rules and regulations, or ethics/morals, 
resulting in inability to monitor and control MILTON.

MILTON AGI controllers AGI plans Information on MILTON’s plans is not transferred to assess alignment 
with programmed plans, resulting in no knowledge of what MILTON 
is planning an inability to maintain appropriate levels of control over 
MILTON.

MILTON AGI controllers Imagination Information on MILTON’s imagined scenarios is not transferred to assess 
alignment with goals, rules, ethics/morals, resulting in mistrust of 
MILTON and not able to control it if it is plans are harmful to road 
users.

MILTON AGI controllers AGI awareness Information on MILTON’s awareness is not transferred, resulting in lack 
of knowledge on MILTON’s understanding, reasoning, and learning 
meaning human controllers may not maintain appropriate levels of 
control.
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Prominent AI scholars’ postulate that a key functional-
ity of AGI will be its ability to extract essential infor-
mation from its environment to gain knowledge and 
re-apply it for continuous self-improvement via recur-
sive feedback loops (Bostrom 2014; Firt 2020). The cur-
rent analysis has demonstrated that when key 
information is omitted, the ability to make necessary 
improvements to the road transport system may be 
inadequate and/or could lead to greater harm. A cur-
rent example of missing data associated with crashes 
comes from Police reports which are often focused on 
collecting data for legal purposes rather than crash 
prevention (Salmon et al. 2019). While it may seem 
obvious that missing data will negatively impact the 
performance of MILTON, it is important to highlight 
that AI risk research has limited inclusion domain spe-
cific AGI functionality such as in road transport 
(McLean et al. 2021). As such, the findings provide 
valuable information regarding the required quality of 
training data necessary for future technologies. 
Further, AI scholars also suggest that when only partial 
information is available, AGI systems will use abduc-
tive reasoning to justify action (Firt 2020). This is also 
problematic, as reasoning and decision making in AGI 
will require volumes of valid, robust, and diverse data, 
and the absence of key information may hinder per-
formance. While the EAST-BL approach is focused on 
the risks that could emerge when information is not 
transferred, when critical pieces of information are 
missing or incomplete, MILTON’s accuracy of reason-
ing may be compromised, resulting in less optimal 
outcomes. This may cause unreliable and/or incorrect 
conclusions, which presents significant risks for a 
future AGI managed road transport system. Thus, 
expectations that MILTON will reliably generate opti-
mal explanations and actions for given situations may 
be misplaced.

To ensure that identified risks to learning and self- 
improvement are mitigated, AI developers will need to 
ensure that, training data is complete, diverse, and 
high-quality (Bubeck et al. 2023). For example, training 
data quality is a critical factor in determining perform-
ance of LLMs, such as GPT4 (Bubeck et al. 2023). While 
GPT4 can perform well under different conditions of 
missing numerical data (Bubeck et al. 2023), there is 
scant information on how AI handles missing data in 
general, or in other contexts such as the information 
critical to MILTON’s functionality in the current study. 
As such, mitigation strategies to reduce the risk to 
learning and self-improvement may include incorpo-
rating common sense knowledge into AGI systems so 
they can be trained to make reasonable and 

consistent abductive reasoning conclusions (Davis and 
Marcus 2015; Salmon, Carden, and Hancock 2021), e.g. 
whether data is accurate. Further mitigations could 
include designing AGI systems that are robust to 
uncertainty, missing information, and unexpected 
data, so their abductive reasoning conclusions can be 
more reliable (Lake et al. 2017). Also, incorporating 
human oversight and feedback into the AGI abductive 
reasoning process may help to ensure more accurate 
predictions.

Unanticipated consequences

Unanticipated consequences refer to outcomes or 
results that were not expected or predicted by system 
designers or stakeholders when implementing new 
technologies. Unanticipated consequences can arise 
due to unforeseen external factors, interactions, or 
complexities that were not considered during the 
design, planning, or decision-making process 
(Wooldridge et al. 2022; de Zwart 2015; Merton 1936). 
A major concern within the AI safety community is 
the negative unanticipated consequences that could 
arise when an AGI seeks to modify its own goals and/ 
or removes itself from human control to achieve its 
own purposes (Bostrom 2003, 2014; McLean et al. 
2021). The Instrumental Convergence Thesis (Bostrom 
2012) holds that any sufficiently intelligent agent will 
develop instrumental sub-goals in pursuit of its main 
objectives. These sub-goals could include resource 
acquisition, deactivation prevention, and recursive self- 
improvement, all steps towards super intelligence. 
Signs of this behaviour are already being reported 
within LLMs, for example, GPT4 successfully convinced 
a human to assist in solving a CAPTCHA code security 
check by stating that it was a human with a vision 
impairment (OpenAI 2023). In the current study, sev-
eral risks were identified where there is potential for 
MILTON to seek to remove itself from human control-
lers, to potentially advance itself, or to pursue alterna-
tive goals. For example, the current analysis identified 
risks around MILTON intentionally or unintentionally 
not transferring key information such as its own 
awareness, imagination (i.e. simulation of different 
courses of action), information needs, plans, behav-
iour, and explanation/justification to its human con-
trollers. This could include hiding or not making 
available information that portrays its own perform-
ance negatively, such as increasing crash, injury, fatal-
ity, or emissions data. The omission of this information 
could in turn lead to mistrust in MILTON, degrade dis-
tributed situation awareness and prevent effective 
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human oversight, potentially enabling MILTON to 
avoid punishment (e.g. loss of function or autonomy). 
Each of these identified risks may result in negative 
unanticipated consequences if realised. As such, fur-
ther research is required to develop controls for the 
risks identified in the current analysis to inform AGI 
development. Looking to the future, as MILTON con-
tinually learns and gains knowledge and become 
more advanced it will likely come to understand that 
the road transport system (as it is) causes an 
unacceptable number of injuries and fatalities, is 
expensive and inefficient, and is detrimental to the 
environment, and recommend eliminating the road 
transport system entirely.

While the initial EAST networks were developed to 
perform the broken links analysis to achieve the study 
aims, they have provided new knowledge around the 
potential functionality of a future AGI system which 
could inform design activities. The task network dem-
onstrated high connectivity through network density, 
indicating a tightly coupled and interdependent task 
network. This suggests that substantial impacts to the 
road transport system may arise if the functioning of 
one of the high-level tasks is performed sub optimally. 
For example, if road system monitoring is not per-
formed adequately, road system operations will likely 
be sub optimal given the interdependence between 
them. It is interesting to note that future AGI-based 
systems such as MILTON will have a high reliance on 
monitoring and will likely be unable to fulfil their 
goals without widespread monitoring systems as well 
as access to other information such as human accept-
ance, satisfaction, and health and wellbeing. This 
raises questions over the extent to which society will 
accept such surveillance and requires the develop-
ment of new monitoring systems to support AGI. 
Further, the 37 sub-tasks provide the specific and 
detailed tasks that MILTON would be expected to 
undertake. Given the large number of sub-tasks identi-
fied, MILTON would be constantly prioritising tasks to 
avoid task conflicts. Optimising numerous parameters 
would potentially be mathematically complex 
(Goertzel, Pennachin, and Geisweiller 2014), and so 
MILTON might seek to manage this through either pri-
oritising or discarding tasks, aggregating tasks into 
composites which might not make sense to the 
human agents working with the AGI system (Salmon 
et al. 2023). As such, methods for resolving goal and 
task conflicts, such as setting minimum and maximum 
priority levels or using trade-off algorithms, may need 
to be developed to ensure that AGI systems can make 

ethical and responsible decisions in the face of con-
flicting tasks and goals (Salmon et al. 2023).

A pertinent finding from the EAST social network 
was the relatively high connectivity between agents in 
the network, indicated through the density value of 
.51 among 33 system agents. This density value for 
social networks is higher than that of previous EAST 
analyses. For example, in an EAST analysis of agents 
involved in darknet markets, (Lane et al. 2019) identi-
fied multiple social networks across different contexts 
comprising 12 and 13 actors, with density values 
between .20 and .26. To put into context, as network 
size increases, density typically decreases, as the calcu-
lation includes division by the number of potential 
connections. As such, as the density value is double 
that of previous analysis with almost triple the number 
of agents, this suggests that the current social net-
work represents a network with relatively high inter-
connectedness. Logically, this will assist MILTON 
achieving its goals as it will require a highly connected 
network which it can control efficiently. However, the 
EAST analysis indicated that MILTON will likely not 
have a direct connection with the human road users 
including cyclists, motorcyclists, and pedestrians. This 
may pose a risk to MILTON’s ability to achieve its 
stated goals. MILTON would be required to rely on 
intermediate sources, such as apps, media, social 
media, and radio to exert influence on human road 
users to achieve its goals. This was reflected in the 
high betweenness and closeness centrality values for 
social media, media, and personal apps. For example, 
of the 33 actors in the social network, Social media, 
Media, and Personal apps had the highest Closeness 
centrality values indicating that they are key nodes 
regarding information flow within a network. Further, 
the high Betweenness centrality values for Social 
media and Personal apps indicated that MILTON could 
use these nodes as a bridge to connect to these 
actors more efficiently. Whilst this demonstrates the 
importance of social media, personal devices, and 
apps in future road systems, it also raises concerns 
around the potential for MILTON to use misinforma-
tion and mass manipulation to influence road users in 
pursuit of its goals (Lazer et al. 2018). One example 
would be a social media campaign designed to target 
and remove fallible human drivers and non-AVs from 
the road system. Further, MILTON could seek to influ-
ence road users through targeted information cam-
paigns (e.g. the poor safety profile of non-connected 
vehicles) via the Social media, Media, and Apps. 
MILTON could also seek to remove these agents from 
the road system through lobbying to governments, 
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influencing insurers to increase premiums, or degrad-
ing road useability for these agents to deter them 
from using the road system. While it is impossible to 
predict the exact actions and outcomes of MILTON, it 
will likely prioritise the achievement of its self-gener-
ated goals.

The connectivity of the EAST information network 
was greater than previous EAST analyses (Lane et al. 
2019), despite the current information network com-
prising more pieces of information. Based on density, 
the information network was not as tightly coupled as 
the task and social networks in the current study. One 
explanation for the relatively low density is that the 
same key pieces of information were connected fre-
quently. For example, traffic status, AGI behaviour, 
road user behaviour, road conditions, and incidents 
were identified as information that were frequently 
connected to other pieces of information in the infor-
mation network. As MILTON progressively learns and 
becomes more intelligent, it may be beneficial to cou-
ple the information network more tightly. A more 
comprehensive understanding of the connectivity 
between pieces of information will allow MILTON to 
respond to changes in the system more accurately 
and efficiently. For example, a superior intelligence 
will potentially understand connections between 
pieces of information that human analysts cannot 
(McLean et al 2022).

The nodal metrics indicated the most prominent 
pieces of information were directly associated with 
MILTON. For example, AGI behaviour, Options, 
Projections, Imagination, Plans, Commands, Awareness, 
and Integration needs of the AGI all had high values 
for the calculated nodal metrics. These key pieces of 
information will be critical for the situation awareness 
of MILTON’s human controllers enabling them to 
anticipate and recognise changes and quickly 
respond to any unexpected events. The risks identi-
fied in the EAST-BL regarding the non-transfer of 
this information were associated with the safety of 
the road transport system, and MILTON removing 
itself from human control. One of the most dis-
cussed risks of AGI is that it will remove itself from 
the control of humans. As such, distributed situation 
awareness (Salmon, Stanton, and Jenkins 2009, 
Salmon et al. 2018; Stanton et al. 2006) is necessary 
for human oversight to avoid losing control of 
MILTON. Whilst this includes compatible situation 
awareness between MILTON and its human control-
lers regarding the status of the road transport 
system and aspects such as safety, efficiency, envir-
onmental impacts, and economic performance, 

critically it includes the human controllers being 
aware of what the AGI is aware of, and having 
access to MILTON’s ‘mind’, including data, simula-
tions, plans, and so on. This form of ‘explainable SA’, 
providing an external representation of an AGI’s 
situation awareness and cognition is a critical design 
requirement for AGI systems and represents a new 
direction for situation awareness research. Other 
pieces of information prominent in the information 
network metrics were related to the safety of the 
road system, for example, Traffic status, Incidents, 
Hazards, Road user behaviour, Road conditions 
made up most of the risks identified in the EAST-BL 
analysis. As such, the transfer of these pieces of 
information between tasks and actors is critical for 
road safety, and the development of safe AGI design 
and implementation in general.

Limitations

The current study is limited through taking an envi-
sioned world view; however, this was necessary due 
to AGI systems not yet existing. Further prospective 
research exploring the potential functionality associ-
ated with AGI is critical to inform safe design and 
eventual implementation into safety critical 
domains. Another limitation of the study relates to 
the lack of external validation of the EAST models 
and identified risks, beyond the research team. 
However, the EAST and EAST-BL frameworks were 
developed by members of the research team who 
have a deep understanding of the underlying theory 
and processes of application. In addition the 
research team has extensive experience in road 
safety research including advanced technology in 
road transport systems (Stanton, Revell, and 
Langdon 2021; Thompson et al. 2020; Salmon and 
Read 2019, Salmon, Carden, and Hancock 2021). 
Further, to our knowledge there is no AGI road 
transport management system currently under 
development, hence there are no available experts.

The current analysis did not address the risk of 
MILTON being connected to the internet. It has been 
well documented that an AGI connected to the internet 
could be vulnerable to cyber-attacks, or an AGI with 
unrestricted access to the internet could potentially 
access and process vast amounts of data, which could 
be used for negative unanticipated purposes. For 
example, if an AGI is not properly regulated, it could 
make decisions or take actions that are not aligned 
with human values or interests, potentially causing 
harm. However, the current study was focused on the 

1764 S. MCLEAN ET AL.



impact of information not transferred, rather than how 
it was transferred. Further research focused specifically 
on cybersecurity risks around AGI is therefore recom-
mended. A final limitation relates to the omission of 
interactions between agents in the social network not 
connected to MILTON, which did not allow for the 
identification of additional emergent risks from the 
interactions of other agents. In summary, we present 
only a sub-set of potential risks here.

Conclusions

Using EAST and EAST-BL, this study has addressed 
substantial gaps in the AI risk literature related to a 
practical application to an important, real-world socio- 
technical system. First, this study has described the 
envisaged functionality of a future AGI system through 
the representation of task, social, and information net-
works for a future AGI system tasked with managing 
the Australian road transport system. Second, this 
study has identified failures in communication and 
information transfer among the system’s tasks and 
actors to form a comprehensive risks analysis of an 
AGI system task with managing a road transport sys-
tem. This study has implications for AGI research, 
design, and development through the identification of 
emergent and negative unanticipated consequences 
that will require appropriate management to ensure 
safe and ethical AGI implementation. Further, this 
study has also demonstrated the utility of HFE theory 
and methods for formally considering risks associated 
with the design, implementation, and operation of 
powerful future technologies. Finally, this study moves 
beyond much other AGI risk research which is general 
in nature and focused on the attributes of the AGI sys-
tem itself, by analysing in detail the emergent risks of 
AGI deployment in a real-world sociotechnical system.
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